首页> 外文OA文献 >Integration of excimer laser micromachining in a biomedical sensor microfabrication process
【2h】

Integration of excimer laser micromachining in a biomedical sensor microfabrication process

机译:准分子激光微加工在生物医学传感器微加工过程中的集成

摘要

In the frame of the Interreg IV project “MICROBIOMED”, the Centre Spatial de Liège (CSL) participated to the development of an original concept of plasmonic-related instrumentation platform dedicated to diagnostic biosensing tests out of the laboratory. The developed instrumental platform includes both disposable one-use microfluidic affinity biochip and compact optical readout device for biochip monitoring involving mobile Internet devices for data processing and communication. The biochip includes both microfluidic and optical coupling structures formed into a single plastic slab (see Fig. 1). The microfluidic path of the biochip operates in passive capillary pumping mode. The optical detection part involves Surface Plasmon Resonance phenomenon. An essential advantage of the developed biochip is that its implementation involves conventional hot embossing and thin film deposition process, perfectly suited for mass production of low-cost microfluidic biochip for biochemical applications. In this presentation we focus on the fabrication of the fluidic channels and capillary structures with a commercial excimer laser mask projection system working at 193 nm. Micro-pillars of 25μm width for the capillary pump as in Fig. 1 have been ablated in the PMMA master slab used for the replication chain of the biochip prototype. By simply changing the pattern on the motorized mask, micro-pillars from 10µm to 50 µm diameter have been also machined successfully in PMMA and even glass. The mask is made of a structured metallic thin layer deposited on a quartz substrate and prepared at CSL by direct writing laser technique. The excimer laser mask projection technique allows ablating several tens of µpillars per second in the field of view of the laser beam. The entire micro-pillars area of the biochip master is then performed by a simple step and repeat laser process. The topography and dimensions of the µstructures have been measured by SEM and interferometric optical profilometry. The dynamic hydrophilic behavior of a liquid drop on the micro-pillars structure has been monitored with the camera of a contact angle instrument.
机译:在Interreg IV项目“ MICROBIOMED”的框架内,列日中央空间(CSL)参与了等离子体相关仪器平台的原始概念开发,该平台专门用于实验室外的诊断性生物传感测试。开发的仪器平台既包括一次性使用的微流体亲和力生物芯片,也包括用于生物芯片监控的紧凑型光学读出设备,其中涉及用于数据处理和通信的移动互联网设备。该生物芯片包括形成单个塑料板的微流体和光学耦合结构(见图1)。生物芯片的微流体路径在被动毛细管泵送模式下运行。光学检测部分涉及表面等离子体共振现象。开发的生物芯片的主要优点是其实现涉及常规的热压花和薄膜沉积工艺,非常适合大规模生产用于生物化学应用的低成本微流控生物芯片。在本演示中,我们将重点介绍工作在193 nm的商用准分子激光掩模投影系统的流体通道和毛细管结构的制造。如图1所示,用于毛细管泵的25μm宽的微柱已在用于生物芯片原型复制链的PMMA主平板中烧蚀掉。通过简单地改变电动掩模上的图案,在PMMA甚至玻璃中也成功地加工了直径从10μm到50μm的微柱。掩模由沉积在石英基板上的结构化金属薄层制成,并通过直接写入激光技术在CSL制备。准分子激光掩模投影技术允许在激光束的视野中每秒烧蚀数十个微柱。然后,通过简单的步骤并重复进行激光加工,即可完成生物芯片母盘的整个微柱区域。微结构的形貌和尺寸已通过SEM和干涉光学轮廓仪进行了测量。液滴在微柱结构上的动态亲水行为已通过接触角仪的摄像机进行了监测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号